نمونه گیری

مفاهیم و روشهای نمونه گیری
از آنجا که در سرشماری تمام واحدهای جامعه باید شمارش شود این کار پرهزینه و وقت‌گیر خواهد بود. برای صرفه جویی در وقت و هزینه مجبوریم روش دیگری را بکار بریم. در اینجاست که اهمیت روش نمونه‌گیری آشکار می‌شود. در نمونه گیری معمولا نمونه کوچکی از جامعه را بررسی می‌کنیم و آن را برای کل جامعه تعمیم می‌دهیم. هر وقت تصمیم بگیریم که بوسیله بررسیهای نمونه‌ای اطلاعاتی را تهیه کنیم، فورا با دو مطلب مواجه می‌شویم: تعریف دقیق جامعه‌ای که علاقمند به مطالعه آن هستیم، و گزینش مشخصه یا مشخصه‌هایی که باید ثبت شوند. مفاهیم کلی برای نمونه گیری از قبیل جامعه، نمونه، سرشماری و... را برای ارائه دید کلی از روش نمونه گیری و مزایای آن در انجام بررسیهای آماری ضروری است معرفی شوند.

تعاریف
جامعه: در هر بررسی آماری ، مجموعه عناصر مورد نظر را جامعه می‌نامند. به عبارت دیگر ، جامعه مجموعه تمام مشاهدات ممکنی است که می‌توانند با تکرار یک آزمایش حاصل شوند به طور کلی جامعه عبارت است از مجموعه ای از افراد یا واحدها که دارای حداقل یک صفت مشترک باشند و تعریف جامعه آماری باید جامع و کامل باشد.
سرشماری: سرشماری از جامعه متناهی ، بررسی است که تمام واحدهای جامعه را دربرمی‌گیرد. در بسیاری از موارد ، اجرای سرشماری در یک جامعه متناهی ، کاری است شدنی.
نمونه: نمونه بخشی از جامعه تحت بررسی است که با روشی که از پیش تعیین شده است انتخاب می‌شود. به قسمی که می‌توان از این بخش ، استنباطهایی درباره کل جامعه بدست آورد انتخاب تعدادی از افراد٬ حوادث٬ و اشیاء از یک جامعه تعریف شده به عنوان نماینده آن جامعه . اولین قدم در نمونه گیری تعریف جامعه مورد نظر است و هدف نوعی نمونه گیری است که تمام افراد جامعه جهت انتخاب شدن شانس برابر داشته باشند.

انواع بررسیهای نمونه‌ای
بررسی توصیفی: در بررسی توصیفی ، هدف صرفا کسب اطلاعاتی درباره گروههای بزرگ است.
بررسی تحلیلی: در بررسی تحلیلی ، بین زیر گروههای متفاوتی از جامعه ، برای کشف تفاوتهای آنها مقایسه‌هایی صورت می‌گیرد و یا فرضهایی را درباره دلائل این تفاوتها عنوان کرده و مورد تحقیق قرار می‌دهند.

اهمیت و ضرورت نمونه گیری
پس از انتخاب موضوع تحقیق و بیان مسئله٬ یکی از تصمیمیات مهمی که در پیش روی هر پژوهشگری قرار دارد انتخاب نمونه است٬ نمونه ای که باید نماینده جامعه ای باشد که پژوهشگر قصد تعمیم یافته های تحقیق خود به آن جامعه را دارد.
اگر محقق پژوهش خود را بر تمامی افراد جامعه اجرا کند روش او سرشماری خواهد بود یعنی محقق باید تمامی افراد جامعه را تک تک مورد برسی و آزمون قرار دهد.
اما چون اکثر پژوهشگران توان و زمان اجرای پژوهش بر کل جامعه را ندارند به همین دلیل پژوهش خود را محدود به نمونه کوچکی می سازند.

تعیین حجم نمونه
هر چه حجم یا اندازه نمونه بزرگتر باشد میزان اشتباهات در نتیجه گیری کم میشود و بر عکس هر چه تعداد نمونه محدود باشد مقدار اشتباهات زیادتر است٬ بنابر این زمانی که محقق سطح بالاتری از اطمینان یا معنی دار بودن آماری را ملاک ارزیابی اطلاعات تحقیق خود قرار میدهد لازم است حجم نمونه او بزرگتر انتخاب شود.
لذا اگر هر عضو در جامعه مادر دقیقا مشابه عضو دیگر باشد آنگاه انتخاب نمونه ای با حجم یک عضو هم کافی است. حجم نمونه باید به اندازه ای باشد که نتایج حاصل عینا با نتایج همان مطالعه در جامعه ای که نمونه از آن انتخاب شده است برابر باشد.
در شرایط ذیل انتخاب نمونه با اندازه بزرگ ضروری است :
.1- زمانی که در تحقیق متغیرهای کنترل نشده زیادی وجود دارند.
2- هنگامیکه پیش بینی تفاوت یا همبستگی پایین است. در تحقیقاتی که انتظار داریم برای گروههای مختلف تفاوت اندکی در متغیر وابسته بدست آوریم٬ یا در مطالعاتی که به منظور تعیین ارتباط صورت می گیرند و همبستگی پایین مورد انتظار است.
3-زمانی که گروههای انتخاب شده باید به زیر گروههای دیگری تقسیم شوند.
4- زمانی که جامعه مورد نظر بر اساس متغیر های مورد مطالعه نامتجانس است. اگر کاملا شبیه هم باشند انتخاب نمونه ای با حجم یک نفر کافی است.
5- زمانی که وسیله پایایی برای اندازه گیری متغیر وابسته وجود ندارد. پایایی ابزار اندازه گیری بدان معنا است که هر گاه این ابزار در شرایط و زمانهای مختلف بکار رود٬ آزمودنی های یکسان دارای نمره های مشابهی گردند.

ارتباط حجم نمونه با فرضیه پوچ (صفر یا آماری)
همانطوریکه گفته شد حجم نمونه را باید تا حد امکان بزرگ انتخاب کرد زیرا حجم نمونه ارتباط بسیار نزدیکی با آزمون فرضیه پوچ در تحقیق دارد٬ بدین ترتیب که هر چه اندازه گروه نمونه بزرگتر انتخاب شود محقق با قاطعیت بیشتری فرض پوچ را که واقعا نادرست است رد میکند.
فرضیه پوچ٬ صفر یا آماری هدفی جزء رد تحقیق ندارد این فرض صریحا منکر وجود تفاوت یا رابطه و یا اثر بین دو یا چند متغیر است. به سخن دیگر این فرض گویای آن است که هر نوع تفاوت٬ رابطه یا اثر صرفا نتیجه وقایع اتفاقی یا خطاها و اشتباهات آماری و نمونه گیری است٬ به همین جهت محقق به آزمایش و آزمون این فرض می پردازد.

مزایای نمونه گیری
تقلیل هزینه و صرفه جویی در منابع مالی و هزینه: اگر داده‌ها فقط از نسبت کوچکی از توده جامعه تامین شوند مسلما هزینه تهیه آنها به مراتب کمتر از سرشماری است. در جامعه‌های بزرگ نتایجی که از طریقه نمونه گیری بدست می‌آیند آن قدر دقیق هستند که می‌توان آنها را به عنوان نتایج خود جامعه مورد استفاده قرار داد.
سرعت بیشتر و جلوگیری از اتلاف وقت محقق: چون حجم نمونه کمتر از حجم جامعه در سرشماری است، جمع آوری و تلخیص داده‌ها با سرعت بیشتر ، یعنی با وقت کمتری انجام می‌شود.
قدرت عمل بیشتر: در برخی از نمونه گیری‌ها که وجود افراد متخصص و آموزش دیده و همچنین وسایل اندازه گیری و انجام آزمونهای دقیق برای تهیه داده‌ها ضروری است مسلما به علت کمبود این امکانات ، انجام سرشماری عملا غیر ممکن است.
صحت عمل بیشتر: چون برای انجام یک نمونه گیری به دلیل حجم کار کمتر ، امکان آموزش افراد برای تهیه پرسشنامه و انجام مصاحبه‌ها وجود دارد، لذا صحت عمل در نمونه گیری بیشتر از سرشماری است.
حفظ واحدهای جامعه: در بعضی از جامعه‌ها امکان انجام سرشماری نیست و ناگزیریم برای بررسی مشخصه مورد نظر از نمونه گیری استفاده کنیم.

اشتباهات نمونه گیری
اشتباهات نمونه گیری از جمله عواملی هستند که ممکن است هر پژوهشگری در روند تحقیق خود مرتکب آن شود و به دو دسته زیر تقسیم میشوند :
1- اشتباهات نمونه گیری

1-1- اشتباه ناشی از در دست نبودن فهرست کامل افراد جامعه
1-2- اشتباه ناشی از انتخاب معدودی از افراد جامعه
1-3- اشتباه ناشی از تحلیل آماری نامناسب

2- اشتباهات غیر نمونه گیری

2-1-اشتباه ناشی از عدم مشاهده افراد مورد مطالعه که به دو دسته تقسیم میشوند : عدم پوشش و عدم پاسخ.
2-2-اشتباه ناشی از مشاهده نا دقیق که به سه دسته تقسیم میشوند : ابزار نادقیق٬ ثبت نادقیق داده ها و استخراج نامناسب.

خطای نمونه گیری
بین ویژگیهای یک نمونه و ویژگی های جامعه ای که نمونه از آن انتخاب میشود تفاوت وجود دارد. این تفاوت برای نمونه تصادفی قابل برآورد است و به آن خطای نمونه گیری گفته می شود. خطای نمونه گیری تابع اندازه حجم نمونه است هر چه اندازه نمونه کوچکتر باشد خطای نمونه گیری زیاد است.

انواع نمونه گیری تصادفی
نمونه گیری تصادفی بدون جایگذاری: یک ویژگی مهم نمونه گیری تصادفی ساده بدون جایگذاری این است که احتمال استخراج هر واحد مشخص از جامعه در هر استخراجی مساوی با احتمال استخراج آن واحد مشخص در استخراج اول است.
نمونه گیری تصادفی با جایگذاری: اگر در انتخاب n واحد نمونه ، پس از انتخاب هر واحد ، آن را به جامعه برگردانیم و انتخاب بعدی را انجام دهیم نمونه گیری تصادفی ساده را با جایگذاری می‌نامند. در این روش ، انتخاب هر واحد مستقل از انتخاب واحدهای دیگر است.

انواع نمونه گیری
نمونه گیری برای تعیین یک نسبت
بعضی اوقات مایلیم نسبت واحدهایی از جامعه را که صفت معینی دارند برآورد کنیم. به واحدهایی که صفت مورد نظر را دارند، مقدار 1 را تخصیص می‌دهیم، و به بقیه واحدها مقدار 0 را منسوب می‌کنیم. در این روش محقق مایل است نمونه تحقیقی را به گونه ای انتخاب کند که مطمئن شود زیر گروه ها با همان نسبتی که در جامعه وجود دارند به عنوان نماینده جامعه٬ در نمونه نیز حضور داشته باشند. این نوع نمونه گیری وقتی بکار می رود که جامعه دارای ساخت همگن و متجانس نیست. یعنی در این روش درصد آزمودنی هایی که به صورت تصادفی از هر گروه انتخاب می شوند با درصد همان گروه در جامعه مورد نظر برابر است. بنابر این اگر یک گروه به طور مثال ۸ درصد از جامعه را تشکیل می دهند همین گروه ۸ درصد از نمونه را نیز تشکیل خواهند داد.
این روش در مطالعه هایی که محقق قصد مقایسه زیر گروه های مختلفی را داشته باشد مناسب است٬ اگر در چنین شرایطی از این روش استفاده نشود هر گونه تجزیه و تحلیل اطلاعات جمع آوری شده از نمونه نامناسب و موجب نتیجه گیری غلط خواهد بود.
مثال : دانش آموزان (عالی ـ متوسط ـ ضعیف) یا اعضای یک دانشگاه (استاد ـ دانشجو ـ کارمند ـ کارگر).
به طور خلاصه در این روش محقق مطمئن است که نمونه انتخاب شده بر اساس ویژگی ها و عواملی که اساس آن طبقه بندی بوده اند٬ نماینده واقعی جامعه مورد نظر است.

نمونه گیری تصادفی طبقه بندی شده

یکی از عمده‌ترین طرح های مفید عملی ، نمونه گیری تصادفی طبقه بندی شده نامیده می‌شود، ابتدا جامعه را به قسمتهای همگنی تقسیم کرده، آنگاه نمونه‌های تصادفی ساده مستقل ، از این زیر مجموعه‌های جداگانه استخراج می‌کنیم. در این نوع نمونه گیری هر یک از اعضای جامعه تعریف شده شانس برابر و مستقلی برای قرار گرفتن در نمونه دارند٬ منظور از مستقل بودن این است که انتخاب یک عضو به هیچ شکل در انتخاب سایر اعضای جامعه تاثیری ندارد. در این روش ابتدا فهرست اسامی تمامی اعضا را به دست آورده٬ سپس به هر یک از آنها نمره ای اختصاص می دهیم و با استفاده از جدول اعداد تصادفی تعداد مورد نیاز را انتخاب می کنیم.
اگر جامعه مورد مطالعه کوچک باشد از روش قرعه کشی استفاده می شود٬ یعنی اسامی افراد را بر روی یک تکه کاغذ نوشته و در داخل کیسه قرار می دهیم٬ سپس کاغذ ها را به طور تک تک خارج می کنیم تا زمانیکه حجم نمونه مورد نظر کامل شود.
نمونه گیری به روش تصادفی شانس نماینده بودن نمونه را افزایش می دهد.

نمونه گیری سیستماتیک
نمونه گیری سیستماتیک مشتمل بر گزینش واحدها به روشی سیستماتیک و در نتیجه به صورتی غیر تصادفی است. منظور از این نوع فن نمونه گیری معمولا پخش کردن واحدها بطور یکنواخت بر روی چارچوب است. عنصر تصادفی بودن اغلب به این ترتیب دخالت داده می‌شود که اولین واحد را بطور تصادفی انتخاب می‌کنند. در این صورت گزینش اولین واحد ، بقیه واحدهای نمونه را معین می‌کنند. همانند نمونه گیری تصادفی ساده٬ نمونه گیری منظم نیز برای انتخاب یک نمونه از یک جامعه تعریف شده به کار می رود.از این روش زمانی استفاده می شود که تمام اعضای جامعه تعریف شده قبلا به صورت تصادفی فهرست شده باشند. به عنوان مثال صد نفر دانش آموز از یک جامعه هزار نفری که قبلا فهرست شده اند انتخاب می کنیم٬ برای این منظور ابتدا تعداد اعضای جامعه را به تعداد اعضای نمونه مورد نیاز تقسیم می کنیم.۱۰=۱۰۰/۱۰۰۰ سپس یک عدد تصادفی چنان انتخاب می کنیم که کوچکتر یا مساوی فاصله نمونه گیری باشد. به عنوان مثال ما عدد ۶ را انتخاب می کنیم ٬ بدین ترتیب افرادی را که در فهرست جامعه شماره های آنها به ترتیب شماره های ۶و۱۶و۲۶و۳۶و۴۶و... است انتخاب میکنیم و این را تا انتخاب ۱۰۰ نفر ادامه می دهیم.
این روش آسانتر از روش نمونه گیری تصادفی ساده است و تفاوت آن با روش نمونه گیری ساده در این است که در این روش انتخاب هر عضو مستقل از انتخاب سایر اعضاء جامعه نیست. هنگامیکه اولین عضو انتخاب شد بقیه اعضای نمونه مورد نظر به صورت خودکار تعیین می شوند.
اگر افراد جامعه به صورت تصادفی فهرست شده باشند می توان نمونه گیری منظم را به جای نمونه گیری تصادفی ساده به کار برد. اما در صورتیکه افراد جامعه با توجه به یک نظم معین بر اساس ویژگی یا ویژگی هایی فهرست شده باشند باید از نمونه گیری تصادفی ساده استفاده کرد.

نمونه گیری خوشه‌ای
در بسیاری از مواقع ، می‌توان بوسیله اجرای یک وسیله با انتخاب تصادفی گروهها یا خوشه‌هایی از واحدهای نمونه گیری به جای گرفتن یک نمونه تصادفی ساده از جامعه ، در میزان هزینه بطور اساسی صرفه جویی کرد. این روش وقتی به کار می رود که فهرست کامل افراد جامعه در دسترس نباشد. به این منظور افراد را در دسته هایی خوشه بندی می کنند سپس از میان خوشه ها نمونه گیری به عمل می آورند و به طور کلی زمانی به کار می رود که انتخاب گروهی از افراد امکانپذیر و آسانتر از انتخاب افراد در یک جامعه تعریف شده باشد.
نمونه گیری خوشه‌ای ما را از ساختن چارچوب برای تمامی جامعه بی‌نیاز می‌کند، که این تهیه چارچوب خود اغلب یک کار پرخرج و خسته کننده‌ای است. به علاوه چون واحدهای یک خوشه ، مجاور هم هستند و بنابراین دسترسی به آنها آسان است، فرآیند نمونه گیری بطور قابل توجهی به صرفه استدر نمونه گیری خوشه ای واحد اندازه گیری فرد نیست٬ بلکه گروهی از افراد هستند که به صورت طبیعی شکل گرفته و گروه خود را تشکیل داده اند. به عنوان مثال فرض می کنیم جامعه مورد نظر و تعریف شده ما عبارت است از کلیه افراد یک شهر که بیشتر از ۱۸ سال سن دارند. در این جامعه نمونه گیری تصادفی ساده و نمونمه گیری منظم زمانی میسر است که فهرست کامل تمام افراد یک شهر را با سن آنها در دست داشته باشیم٬ در غیر اینصورت به جای انتخاب فرد به عنوان واحد نمونه گیری٬ منطقه را واحد نمونه گیری قرار می دهیم و سپس به روش نمونه گیری تصادفی ساده از بین مناطق٬ منطقه یا مناطق مورد نظر را انتخاب می کنیم.

نمونه گیری خوشه ای چند مرحله ای
این روش نوع دیگری از نمونه گیری خوشه ای است. زمانی که منطقه به صورت تصادفی انتخاب شد٬ می توان نمونه گیری را در داخل منطقه نیز ادامه داد. به عنوان مثال مطالعه کننده ممکن است آدرس کلیه افرادی را که در یک منطقه زندگی می کنند داشته باشد بنابراین از بین این افراد٬ ۱۰ نفر را به صورت تصادفی انتخاب می کند. در روش نمونه گیری خوشه ای چند مرحله ای فهرست نمونه گیری دوبار و در بعضی مواقع بیش از دو بار تهیه می شود. نمونه گیری خوشه ای برخی از مواقع در تحقیقات آموزشی به کار می رود در این نوع تحقیقات از کلاس به عنوان واحد نمونه گیری استفاده می شود.
از مزیت های عمده نمونه گیری خوشه ای جلوگیری از اتلاف وقت و صرفه جویی در منابع مالی است. از معایب آن هم اینکه :
1-دقت آن از نمونه گیری تصادفی ساده کمتر است زیرا در نمونه گیری تصادفی ساده فقط یک اشتباه وجود دارد در صورتیکه در نمونه گیری خوشه ای در هر مرحله یک اشتباه نمونه گیری وجود خواهد داشت یعنی به تعداد مراحل خطای نمونه گیری وجود دارد.
2-برای داده های جمع آوری شده از این نوع نمونه گیری فرمول آسانی را نمی توان به کار برد. زیرا بکار بردن یک نوع ابزار آماری در جامعه های مختلف دقت آن را کاهش می دهد.
در پایان شایان ذکر است در برخی مواقع در صورتی که ایجاب کند انواع مختلف نمونه گیری کم و بیش در هم آمیخته شده و مورد استفاده قرار می گیرد

مراحل اصلی در یک بررسی نمونه‌ای
اهداف بررسی: همواره باید حکمی روشن و صریح درباره هدفهای بررسی در دست باشد. در غیر این صورت با افزایش حجم کار و جزئیات دیگر نمونه گیری ، تصمیمهایی اتخاذ می‌شوند که با اصل اهداف هماهنگی ندارند.
جامعه مورد نمونه گیری: جامعه‌ای که نمونه از آن می‌گیریم، باید دقیقا تعریف شود. جامعه‌ای که از آن نمونه می‌گیریم باید منطبق بر جامعه هدف باشد یعنی جامعه‌ای که می‌خواهیم درباره آن کسب اطلاع کنیم.
جمع آوری داده‌ها: لازم است تحقیق کنیم که تمام داده‌ها به اهداف بررسی مربوط‌اند وهیچ داده اساسی از قلم نیفتاده است.
درجه دقت مطلوب: نتایج یک بررسی نمونه‌ای همیشه با عدم حتمیت همراه است، زیرا اولا نسبتی از جامعه مورد اندازه گیری قرار گرفته است و ثانیا اندازه گیری‌ها همیشه با خطا همراه‌اند. میزان این عدم دقت را می‌توان با نمونه‌های بزرگتر و با استفاده از وسایل اندازه گیری دقیق‌تر تقلیل داد.
روش اندازه گیری: در جامعه ، برای اندازه گیری واحدهای نمونه ، انتخاب ابزار اندازه گیری و روش اندازه گیری واجد اهمیت است.
چارچوب: قبل از انتخاب نمونه جامعه را باید به بخشهایی تقسیم کرد. این بخشها را واحدهای نمونه گیری یا فقط واحدها می‌نامند.
انتخاب نمونه: حال طرحهای متعددی وجود دارند که می‌توان با آنها نمونه را انتخاب کرد. برای هر طرحی و با توجه به درجه دقت مورد نیاز در برآوردها باید حجم خاصی از نمونه را مشخص نمود.
پیش آزمون: تجربه نشان داده است که قبل از انجام نمونه گیری نهایی ، امتحان کارایی پرسشنامه و یا روشهای مورد نظر با مقیاسی کوچک بسیار مفید است.
آموزش آمارگران: در بررسیهای جامع نمونه‌ای ، اغلب با مسائل خاص حرفه‌ای مواجهیم. لذا آمارگران باید قبلا درباره هدف نمونه گیری و روشهای نمونه گیری و جمع آوری داده‌ها و سایر خط مشی‌ها آموزش ببینند.
تلخیص و تحلیل داده‌ها: اولین مرحله ، آماده کردن پرسشنامه‌های تکمیل شده برای انتقال داده‌ها به ماشین است.
اطلاعات حاصل برای بررسیهای آتی: هر نمونه‌ای که از جامعه گرفته می‌شود بالقوه راهنمایی برای اصلاح نمونه گیریهای بعدی است.

چه روش نمونه گیری را باید بکار برد؟
تعیین طرحی از نمونه گیری که باید به کار برد و انتخاب کردن حجمهای نمونه‌ای ، از موضوعهای کلیدی در طرح ریزی یک بررسی هستند. انتخاب یک روش نمونه گیری مناسب مبتنی بر عاملهایی از قبیل ساختار جامعه ، نوع اطلاع مورد جستجو ، و تسهیلات اداری و پرسنل موجود برای اجرای بررسی است. در رابطه با انتخاب روش نمونه گیری مناسب ، حجم نمونه مورد نیاز با مشخص کردن یک درجه دقت مطلوب برای برآوردها تعیین می‌شود. آنگاه باید این موضوع را هم تحقیق کرد که آیا بودجه‌ای که به بررسی اختصاص داده شده است، امکان تهیه این حجم نمونه را می‌دهد.

نمونه گیری و انواع آن
شیوه های نمونه گیری مرسوم و متداول در اصل به دو بخش تقسیم میشوند :
1- نمونه گیری سهمیه ای
2- نمونه گیری اتفاقی یا احتمالی

نمونه گیری سهمیه ای : اگر اعضای طبقه یک گروه بیشتر باشد پس در نمونه نیز تعدادشان بیشتر خواهد بود. از این شیوه وقتی استفاده می شود که اولا هدف تحقیق کمتر جنبه علمی داشته باشد ثانیا ساخت جامعه مورد مطالعه مشخص باشد. نمونه گیری سهمیه ای شرط قابلیت تعمیم را به اندازه لازم دارا نیست.

نمونه گیری اتفاقی یا احتمالی : در این نوع نمونه گیری که گاه نمونه گیری تصادفی نیز خوانده می شود انتخاب افراد بر اساس ضابطه کنترل شده ای نیست و متکی به اصل "مشت نمونه خروار است" میباشد.

 

 فهرست منابع
1-روشهای تحقیق و چگونگی ارزشیابی آن در علوم انسانی/ تالیف دکتر عزت ا... نادری و دکتر مریم سیف نراقی.
2-مبانی نظری و عملی پژوهش در علوم انسانی/ تالیف دکتر علی دلاور.
3-کند و کاوها و پنداشته ها/ تالیف دکتر فرامرز رفیع پور.
4-روشهای تحقیق در علوم رفتاری/ تالیف جمعی از نویسندگان (دکتر زهره سرمد٬ دکتر عباس بازرگان٬ دکتر الهه حجازی).
5-تست های کارشناسی ارشد علوم اجتماعی.
6-http://daneshnameh.roshd.ir
7-http://statisticslu.blogfa.com
8- http://learn-m-p-l.persianblog.ir

Copyright © Arash Habibi - Parsmodir.com